59 research outputs found

    Entanglement Entropy for 2D Gauge Theories with Matters

    Get PDF
    We investigate the entanglement entropy in 1+1-dimensional SU(N)SU(N) gauge theories with various matter fields using the lattice regularization. Here we use extended Hilbert space definition for entanglement entropy, which contains three contributions; (1) classical Shannon entropy associated with superselection sector distribution, where sectors are labelled by irreducible representations of boundary penetrating fluxes, (2) logarithm of the dimensions of their representations, which is associated with "color entanglement", and (3) EPR Bell pairs, which give "genuine" entanglement. We explicitly show that entanglement entropies (1) and (2) above indeed appear for various multiple "meson" states in gauge theories with matter fields. Furthermore, we employ transfer matrix formalism for gauge theory with fundamental matter field and analyze its ground state using hopping parameter expansion (HPE), where the hopping parameter KK is roughly the inverse square of the mass for the matter. We evaluate the entanglement entropy for the ground state and show that all (1), (2), (3) above appear in the HPE, though the Bell pair part (3) appears in higher order than (1) and (2) do. With these results, we discuss how the ground state entanglement entropy in the continuum limit can be understood from the lattice ground state obtained in the HPE.Comment: 73 pages, 7 figure

    Wormholes and holographic decoherence

    Get PDF
    We study a class of decoherence process which admits a 3 dimensional holographic bulk. Starting from a thermo-field double dual to a wormhole, we prepare another thermo-field double which plays the role of environment. By allowing the energy flow between the original and environment thermo-field double, the entanglement of the original thermo-field double eventually decoheres. We model this decoherence by four-boundary wormhole geometries, and study the time-evolution of the moduli parameters to see the change of the entanglement pattern among subsystems. A notable feature of this holographic decoherence processes is that at the end point of the processes, the correlations of the original thermo-field double are lost completely both classically and also quantum mechanically. We also discuss distinguishability between thermo-field double state and thermo mixed double state, which contains only classical correlations, and construct a code subspace toy model for that.Comment: 34 pages, 11 figures. v2: numerical plots of section 3.1 corrected. references adde

    Estimating and examining the sensitivity of different vegetation indices to fractions of vegetation cover at different scaling Grids for Early Stage Acacia Plantation Forests Using a Fixed-Wing UAS

    Get PDF
    Understanding the information on land conditions and especially green vegetation cover is important for monitoring ecosystem dynamics. The fraction of vegetation cover (FVC) is a key variable that can be used to observe vegetation cover trends. Conventionally, satellite data are utilized to compute these variables, although computations in regions such as the tropics can limit the amount of available observation information due to frequent cloud coverage. Unmanned aerial systems (UASs) have become increasingly prominent in recent research and can remotely sense using the same methods as satellites but at a lower altitude. UASs are not limited by clouds and have a much higher resolution. This study utilizes a UAS to determine the emerging trends for FVC estimates at an industrial plantation site in Indonesia, which utilizes fast-growing Acacia trees that can rapidly change the land conditions. First, the UAS was utilized to collect high-resolution RGB imagery and multispectral images for the study area. The data were used to develop general land use/land cover (LULC) information for the site. Multispectral data were converted to various vegetation indices, and within the determined resolution grid (5, 10, 30 and 60 m), the fraction of each LULC type was analyzed for its correlation between the different vegetation indices (Vis). Finally, a simple empirical model was developed to estimate the FVC from the UAS data. The results show the correlation between the FVC (acacias) and different Vis ranging from R2 = 0.66–0.74, 0.76–0.8, 0.84–0.89 and 0.93–0.94 for 5, 10, 30 and 60 m grid resolutions, respectively. This study indicates that UAS-based FVC estimations can be used for observing fast-growing acacia trees at a fine scale resolution, which may assist current restoration programs in Indonesia

    Integration of Multi-Sensor Data to Estimate Plot-Level Stem Volume Using Machine Learning Algorithms–Case Study of Evergreen Conifer Planted Forests in Japan

    Get PDF
    The development of new methods for estimating precise forest structure parameters is essential for the quantitative evaluation of forest resources. Conventional use of satellite image data, increasing use of terrestrial laser scanning (TLS), and emerging trends in the use of unmanned aerial systems (UASs) highlight the importance of modern technologies in the realm of forest observation. Each technology has different advantages, and this work seeks to incorporate multiple satellite, TLS- and UAS-based remote sensing data sets to improve the ability to estimate forest structure parameters. In this paper, two regression analysis approaches are considered for the estimation: random forest regression (RFR) and support vector regression (SVR). To collect the dependent variable, in situ measurements of individual tree parameters (tree height and diameter at breast height (DBH)) were taken in a Japanese cypress forest using the nondestructive TLS method, which scans the forest to obtain dense and accurate point clouds under the tree canopy. Based on the TLS data, the stem volume was then computed and treated as ground truth information. Topographic and UAS information was then used to calculate various remotely sensed explanatory variables, such as canopy size, canopy cover, and tree height. Canopy cover and canopy shapes were computed via the orthoimages derived from the UAS and watershed segmentation method, respectively. Tree height was computed by combining the digital surface model (DSM) from the UAS and the digital terrain model (DTM) from the TLS data. Topographic variables were computed from the DTM. The backscattering intensity in the satellite imagery was obtained based on L-band (Advanced Land Observing Satellite-2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2)) and C-band (Sentinel-1) synthetic aperture radar (SAR). All satellite (10–25 m resolution), TLS (3.4 mm resolution) and UAS (2.3–4.6 cm resolution) data were then combined, and RFR and SVR were trained; the resulting predictive powers were then compared. The RFR method yielded fitting R2 up to 0.665 and RMSE up to 66.87 m3/ha (rRMSE = 11.95%) depending on the input variables (best result with canopy height, canopy size, canopy cover, and Sentinel-1 data), and the SVR method showed fitting R2 up to 0.519 and RMSE up to 80.12 m3/ha (rRMSE = 12.67%). The RFR outperformed the SVR method, which could delineate the relationship between the variables for better model accuracy. This work has demonstrated that incorporating various remote sensing data to satellite data, especially adding finer resolution data, can provide good estimates of forest parameters at a plot level (10 by 10 m), potentially allowing advancements in precision forestry

    A Validation Study of the Japanese Version of the Addenbrooke's Cognitive Examination-Revised

    Get PDF
    The aim of this study was to validate the Japanese version of the Addenbrooke's Cognitive Examination-Revised (ACE-R) [Mori: Japanese Edition of Hodges JR's Cognitive Assessment for Clinicians, 2010] designed to detect dementia, and to compare its diagnostic accuracy with that of the Mini-Mental State Examination. The ACE-R was administered to 85 healthy individuals and 126 patients with dementia. The reliability assessment revealed a strong correlation in both groups. The internal consistency was excellent (α-coefficient = 0.88). Correlation with the Clinical Dementia Rating sum of boxes score was significant (rs = −0.61, p < 0.001). The area under the curve was 0.98 for the ACE-R and 0.96 for the Mini-Mental State Examination. The cut-off score of 80 showed a sensitivity of 94% and a specificity of 94%. Like the original ACE-R and the versions designed for other languages, the Japanese version of the ACE-R is a reliable and valid test for the detection of dementia

    Complications Associated With Spine Surgery in Patients Aged 80 Years or Older: Japan Association of Spine Surgeons with Ambition (JASA) Multicenter Study

    Get PDF
    Study Design:Retrospective study of registry data.Objectives:Aging of society and recent advances in surgical techniques and general anesthesia have increased the demand for spinal surgery in elderly patients. Many complications have been described in elderly patients, but a multicenter study of perioperative complications in spinal surgery in patients aged 80 years or older has not been reported. Therefore, the goal of the study was to analyze complications associated with spine surgery in patients aged 80 years or older with cervical, thoracic, or lumbar lesions.Methods:A multicenter study was performed in patients aged 80 years or older who underwent 262 spinal surgeries at 35 facilities. The frequency and severity of complications were examined for perioperative complications, including intraoperative and postoperative complications, and for major postoperative complications that were potentially life threatening, required reoperation in the perioperative period, or left a permanent injury.Results:Perioperative complications occurred in 75 of the 262 surgeries (29%) and 33 were major complications (13%). In multivariate logistic regression, age over 85 years (hazard ratio [HR] = 1.007, P = 0.025) and estimated blood loss ≥500 g (HR = 3.076, P = .004) were significantly associated with perioperative complications, and an operative time ≥180 min (HR = 2.78, P = .007) was significantly associated with major complications.Conclusions:Elderly patients aged 80 years or older with comorbidities are at higher risk for complications. Increased surgical invasion, and particularly a long operative time, can cause serious complications that may be life threatening. Therefore, careful decisions are required with regard to the surgical indication and procedure in elderly patients

    Risk Factors for Delirium After Spine Surgery in Extremely Elderly Patients Aged 80 Years or Older and Review of the Literature: Japan Association of Spine Surgeons with Ambition Multicenter Study

    Get PDF
    Study Design:Retrospective database analysis.Objective:Spine surgeries in elderly patients have increased in recent years due to aging of society and recent advances in surgical techniques, and postoperative complications have become more of a concern. Postoperative delirium is a common complication in elderly patients that impairs recovery and increases morbidity and mortality. The objective of the study was to analyze postoperative delirium associated with spine surgery in patients aged 80 years or older with cervical, thoracic, and lumbar lesions.Methods:A retrospective multicenter study was performed in 262 patients 80 years of age or older who underwent spine surgeries at 35 facilities. Postoperative complications, incidence of postoperative delirium, and hazard ratios of patient-specific and surgical risk factors were examined.Results:Postoperative complications occurred in 59 of the 262 spine surgeries (23%). Postoperative delirium was the most frequent complication, occurring in 15 of 262 patients (5.7%), and was significantly associated with hypertension, cerebrovascular disease, cervical lesion surgery, and greater estimated blood loss (P < .05). In multivariate logistic regression using perioperative factors, cervical lesion surgery (odds ratio = 4.27, P < .05) and estimated blood loss ≥300 mL (odds ratio = 4.52, P < .05) were significantly associated with postoperative delirium.Conclusions:Cervical lesion surgery and greater blood loss were perioperative risk factors for delirium in extremely elderly patients after spine surgery. Hypertension and cerebrovascular disease were significant risk factors for postoperative delirium, and careful management is required for patients with such risk factors

    日本-スウェーデン共同南極トラバース2007/2008 実施報告:I. 企画立案・事前準備と科学研究成果の概要

    Get PDF
    南極地域観測第Ⅶ期5か年計画に基づき,2007/2008 年の南極の夏期シーズンに,国立極地研究所を中心とした研究グループは,スウェーデンの研究者グループと共同で,東南極内陸域のドロンイングモードランド地域の内陸部の氷床環境調査を実施した.本報告は,現地調査前に5年間を費やした研究計画の企画検討の経過や行った事前準備と,現地野外観測を終了した後の6年間に得られた研究成果の概要をまとめるものである.本プロジェクトの調査により,南極内陸高原部の氷床環境の時空間分布について,多くの科学的知見が明らかになった.本報告はその概要を報告する.現地調査の実行の経過は別途の報告に記述する.In the seventh five-year plan of the Japanese Antarctic Research Expedition, a group of Japanese scientists (led by the National Institute of Polar Research) together with a group of Swedish scientists, conducted field surveys to better understand the glaciology of the ice sheet in Dronning Maud Land, East Antarctica, during the 2007/2008 austral summer season. This paper reports on the planning and field preparations, and outlines the scientific achievements of the field expedition. We have gained numerous new scientific insights on the spatio-temporal distribution of the ice sheet environment in the inland plateau. Here, we provide an overview of the new knowledge gained
    corecore